Some protein tyrosine phosphatases target in part to lipid rafts and interact with caveolin-1.
نویسندگان
چکیده
A profile-based search of the SWISS-PROT database reveals that most protein tyrosine phosphatases (PTPs) contain at least one caveolin-1-binding motif. To ascertain if the presence of caveolin-binding motif(s) in PTPs corresponds to their actual localization in caveolin-1-enriched membrane fractions, we performed subcellular fractionating experiments. We found that all tested PTPs (PTP1B, PTP1C, SHPTP2, PTEN, and LAR) are actually localized in caveolin-enriched membrane fractions, despite their distribution in other subcellular sites, too. More than 1/2 of LAR and about 1/4 of SHPTP2 and PTP-1C are localized in caveolin-enriched membrane fractions whereas, in these fractions, PTP-1B and PTEN are poorly concentrated. Co-immunoprecipitation experiments with antibodies specific for each tested PTP demonstrated that all five phosphatases form molecular complexes with caveolin-1 in vivo. Collectively, our findings propose that particular PTPs could perform some of their cellular actions or are regulated by recruitment into caveolin-enriched membrane fractions.
منابع مشابه
Lipid rafts/caveolae are essential for insulin-like growth factor-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction.
Lipid rafts/caveolae are found to be essential for insulin-like growth factor (IGF)-1 receptor signaling during 3T3-L1 preadipocyte differentiation induction. In 3T3-L1 cells, IGF-1 receptor is located in lipid rafts/caveolae of the plasma membrane and can directly interact with caveolin-1, the major protein component in caveolae. Disruption of lipid rafts/caveolae by depleting cellular cholest...
متن کاملTargeting Src homology 2 domain-containing tyrosine phosphatase (SHP-1) into lipid rafts inhibits CD3-induced T cell activation.
To study the mechanism by which protein tyrosine phosphatases (PTPs) regulate CD3-induced tyrosine phosphorylation, we investigated the distribution of PTPs in subdomains of plasma membrane. We report here that the bulk PTP activity associated with T cell membrane is present outside the lipid rafts, as determined by sucrose density gradient sedimentation. In Jurkat T cells, approximately 5--10%...
متن کاملSterol carrier protein-2 directly interacts with caveolin-1 in vitro and in vivo.
HDL-mediated reverse-cholesterol transport as well as phosphoinositide signaling are mediated through plasma membrane microdomains termed caveolae/lipid rafts. However, relatively little is known regarding mechanism(s) whereby these lipids traffic to or are targeted to caveolae/lipid rafts. Since sterol carrier protein-2 (SCP-2) binds both cholesterol and phosphatidylinositol, the possibility t...
متن کاملEssential role for membrane lipid rafts in interleukin-1beta-induced nitric oxide release from insulin-secreting cells: potential regulation by caveolin-1+.
We recently reported that the activation of H-Ras represents one of the signaling steps underlying the interleukin-1beta (IL-1beta)-mediated metabolic dysfunction of the islet beta-cell. In the present study, we examined potential contributory roles of membrane-associated, cholesterol-enriched lipid rafts/caveolae and their constituent proteins (e.g., caveolin-1 [Cav-1]) as potential sites for ...
متن کاملRegulation of raft-dependent endocytosis
Raft-dependent endocytosis is in large part defined as the cholesterol-sensitive, clathrin-independent internalization of ligands and receptors from the plasma membrane. It encompasses the endocytosis of caveolae, smooth plasmalemmal vesicles that form a subdomain of cholesterol and sphingolipid-rich lipid rafts and that are enriched for caveolin-1. While sharing common mechanisms, like cholest...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical and biophysical research communications
دوره 296 3 شماره
صفحات -
تاریخ انتشار 2002